Estimation of System Damping Parameter Using Wavelet Transform
نویسندگان
چکیده
منابع مشابه
Gpr Signal Analysis: Instantaneous Parameter Estimation Using the Wavelet Transform
The classic approach for estimating instantaneous parameters relies on using the Hilbert Transform (HT). The HT method extracts the instantaneous parameters by comparing the imaginary part with the real part of an analytical signal. The instantaneous parameters obtained this way are frequently contaminated by noises. Using the wavelet transform (WT), one can extract the instantaneous parameters...
متن کاملChannel Estimation and CFO Compensation in OFDM System Using Adaptive Filters in Wavelet Transform Domain
Abstarct In this paper, combination of channel, receiver frequency-dependent IQ imbalance and carrier frequency offset estimation under short cyclic prefix (CP) length are considered in OFDM system. An adaptive algorithm based on the set-membership filtering (SMF) algorithm is used to compensate for these impairments. In short CP length, per-tone equalization (PTEQ) structure is used to avoid i...
متن کاملParameter Estimation of Loranz Chaotic Dynamic System Using Bees Algorithm
An important problem in nonlinear science is the unknown parameters estimation in Loranz chaotic system. Clearly, the parameter estimation for chaotic systems is a multidimensional continuous optimization problem, where the optimization goal is to minimize mean squared errors (MSEs) between real and estimated responses for a number of given samples. The Bees algorithm (BA) is a new member of me...
متن کاملDisparity Estimation using TI Multi-Wavelet Transform
A multi-resolution image matching technique based on translation invariant discrete multi-wavelet transform followed by a coarse to fine matching strategy is presented. The technique addresses the estimation of optimal corresponding points and the corresponding disparity maps in the presence of occlusion, ambiguity and illuminative variations in the two perspective views taken by two different ...
متن کاملStatistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korea institute for structural maintenance and inspection
سال: 2015
ISSN: 2234-6937
DOI: 10.11112/jksmi.2015.19.5.030